Ag and Au Nanoparticles: Green Synthesis, Catalytic and Bacterial Activity Studies

Saraschandra Naraginti^{a,b} and A. Sivakumar^{a,*}

^aChemistry Division, School of Advanced Sciences, VIT University, Vellore - 632014, India.

^bKey Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, XiKang Road #1, Nanjing 210098, PR. China.

Supporting Information

S. No.	Content			
1	Figure S1. The optical absorption spectrum at 3 keV indicating the	2		
	presence of metallic silver (a) and absorption spectrum at 2 keV indicates			
	the presence of metallic gold (b).			
2	Figure S2. Zeta potential of (a) silver (S_1) and (b) gold (G_1) nanoparticles	3		
	synthesized from 1.0 x 10^{-3} M AgNO ₃ and HAuCl ₄ respectively.			
3	Figure S3. FT-IR spectrum of fruit extract.	4		
4	Table S1. Bactericidal activity of silver and gold nanoparticles synthesized	4		
	from 1.0 x 10^{-3} M AgNO ₃ (S ₁) and HAuCl ₄ (G ₁) respectively.			
5	Figure S4. (a) Antibacterial activity of silver NPs synthesized from 1.0 x	5		
	$10^{-3}M$ AgNO_3 (S_1) at 80 $^\circ C$ (b) activity of gold NPs synthesized from 1.0			
	x 10^{-3} M HAuCl ₄ (G ₁) at 80 °C.			
6	Figure S5. Comparative plots of ln (A) vs t for (a) $S_5 \& S_1$ (b) $G_5 \& G_1$	6		
	towards the reduction of 4-NP. Comparative plots of ln (A) vs t for (c) S_5			
	& S_1 (d) G_5 & G_1 towards the reduction of MB in the presence of NaBH ₄ .			

Figure S1. The optical absorption spectrum at 3 keV indicating the presence of metallic silver (a) and absorption spectrum at 2 keV indicates the presence of metallic gold (b).

Figure S2. Zeta potential of (a) silver (S₁) and (b) gold (G₁) nanoparticles synthesized from 1.0 x 10^{-3} M AgNO₃ and HAuCl₄ respectively.

Figure S3. FT-IR spectrum of fruit extract.

Table S1. Bactericidal activity of silver and gold nanoparticles synthesized from 1.0×10^{-3} M AgNO₃ (S₁) and HAuCl₄ (G₁) respectively.

Name of the pathogen	Zone of inhibition for Ag NPs (in mm)			Zone of inhibition for Au NPs (in mm)		
	10 µL	20 µL	30 µL	10 µL	20 µL	30 µL
P.aeruginosa	20	25	27	15	16	21
S.aureus	18	20	20	12	17	20

Figure S4. (a) Antibacterial activity of silver NPs synthesized from 1.0 x 10^{-3} M AgNO₃ (S₁) at 80 °C (b) activity of gold NPs synthesized from 1.0 x 10^{-3} M HAuCl₄ (G₁) at 80 °C.

Figure S5. Comparative plots of ln (A) vs t for (a) $S_5 \& S_1$ (b) $G_5 \& G_1$ towards the reduction of 4-NP. Comparative plots of ln (A) vs t for (c) $S_5 \& S_1$ (d) $G_5 \& G_1$ towards the reduction of MB in the presence of NaBH₄.